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ABSTRACT

The theoretical description of the thermal blooming of pulsed,
focused laser beams has been improved by using the equations of
wave optics. Previous approximations of the actual situation have
used a geometrical optics formulation to describe the beam. Results
are in the form of formulas which provide dependence of the beam
degradation on the parameters of the problem. Such formulas will
prove useful in understanding and collating numerical studies of the
full nonlinear problem.
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A WAVE OPTICS CALCULATION OF PULSED LASER
PROPAGATION IN GASES

INTRODUCTION

A theoretical description of the thermal blooming* of pulsed, focused laser beams
has been improved by using the equations of wave optics. Previous approximations of
the actual situation have used a geometrical optics formulation to describe both a colli-
mated beam (1,2) and a focused Gaussian beam (3) in which focusing has been adjoined
in an ad hoc fashion. The present study also serves to check the validity of the previous
work.

The problem is nonlinear and numerical methods must be utilized (4) to study many
cases of interest. Linearization restricts the range of validity but yields parametric expres-
sions which can aid in understanding and collating the numerical results. Thus, a pertur-
bation theory is used to study the effect of the atmospheric heating and the concomitant
index of refraction change on the unperturbed (vacuum) wave amplitude. The heat source
is taken to be proportional to the unperturbed wave. This result represents the first term
of a self-consistent iteration scheme.

DERIVATION OF LASER FIELD EQUATIONS

Maxwell's equations give the wave equation for the electric vector, E:

V(V-E) - V2E = - a32 (eE), (1)

where e is the dielectric constant. Since depolarization is negligible for all cases of interest,
Eq. (1) reduces to the scalar wave equation,

V2& - 12 aa2 (e) = 0, (2)

where a is, for example, one component of linear polarization of the wave vector. Let
a = IeiwCt, where ' is assumed to be slowly varying in time compared with 1/X. Then
Eq. (2) becomes

*When a laser beam passes through a gas, energy is extracted from the beam and the gas is heated. If
the product of beam intensity times the linear absorption coefficient of the gas is sufficiently large, the
resultant density changes represent index-of-refraction changes sufficient to measurably alter the beam
propagation. This effect is known as "thermal blooming" or "thermal lensing."
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2 PETER B. ULRICH

V2,, +W2 4, +2iW ae 2 ae a' + 2icoe at' =0 
C2 C2 at c at a C at (3)

where a2 e/at2 and a2 ,If/at2 have been dropped. This is a good approximation since the
variation in time of the beam amplitude is due to the time variation of the index of re-
fraction. These changes depend on fluid motions and are characteristically on the order
of the beam diameter divided by the sound velocity, i.e., much longer than an optical
period.

The beams to be considered have focal lengths much in excess of their diameters so
that the paraxial approximation (5) is appropriate. Let qf = I'eikNf60Z, where 4) is slowly
varying in z. The paraxial character of the wave makes Ia2 tp/az2I << 12ik(a/az)l so
that the former term may be neglected, resulting in

V2bD + 2ik az) + [k2(e-eo) + 2ik cF + 2i c - c2 at) a '0, (4)

where k = w/c.

The field amplitude is now linearized by making the decomposition

(D = I)0 + 4)1, (5)

where 'Io describes time-dependent propagation in vacuum and ID is a small perturbation
due to heating of the gas which has sustained passage of a beam with amplitude Io.

Furthermore, the dielectric constant is altered by a first-order correction,

e = CO + el, (6)

where el is the perturbation of the ambient value eO due to heating by a beam of ampli-
tude 40.

These equations lead to a zero- and first-order approximation to the problem. The
zero-order equation is

V24)0 + 2ik a\bEO + 2ik CO a-bo =0, (7)

while the first-order equation is

Vl2( + 2ik.Ja(l + (k2el + 2ik 1 a-e- ) -oI az +cat,

2ik + (2ik - at 0 (8)

This result can be simplified further by use of the following inequalities which are
extremely well obeyed with the possible exception of beams with extremely fast rise time
or extremely short durations:

2
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Ik 2 eElo01 >> 2ikel a@40I c atI

2ik ae1 bo1Ca 
>>1 2 ael a) 0 1

2-at a t

In addition the following condition holds since the density responds to the heating in
times on the order of the hydrodynamic time (beam radius/sound speed):

10611l >> | 2ik ael1 k~ e 11 » c a~t 

(9)

(10)

(11)

Finally then, the equation describing the propagation of the perturbed wave, accurate to
first order, is

V24), + 2ik aazl+ 21k abF = _k2 3Npl(eo)O(D,
at (12)

where the Lorentz-Lorenz law relating dielectric constant to gas density change has been
used:

el = 3Npl. (13

SOLUTION FOR UNPERTURBED FIELD

In this section Eq. (7) is solved along with the initial condition

%)0(x,y,z,0) = 0 (14

and boundary conditions

,,o(xy,0,t) = f(x,y,t)

4)0(-, ,z~t Z = 0

axO ayOax -,zt)=a (o,o,z, t) =0.

The amplitude is Fourier-analyzed

00

V(Q,7,z,t) = f[ eiAz ei 7 Y 4) 0 (xy,zt) dxdy
-00

so that

av + iav + +
a-z Tt + 2k

(15)

(16)

3

3)

4)



4 PETER B. ULRICH

A Laplace transformation of the time variable is applied:

W(t,n7,z,s) = e-st V(Q,r1,z,t) dt (17)

giving

aW +k (t2 +2)W + S W = 0, (18)
a3z +2k 'C'

where the initial condition in Eq. (14) has been used. Equation (18) is solved by

W = exp 2k(2 +72) z )

To find A Q, 1,s), W is evaluated at the plane z = 0,

A(,717,s) = W(Q,q,0,s)

= f e-St V(,,r,O.t) dt
0

= 1 Jo e-st dt ffeitn ei?7Vf(u,v,t) dudu.
0 -00

Thus,

V(S,17,zt) =f est[e-i2k)( )2 +172 z e-szlc] ds f e-St dt'

00

X JD f(u,v,t') eE0u eillu dudv; (19)

-00

hence,

1 00 ~~~j0 +y ,00 00

~I~0 t) f1 J dSd-q f + ds I dt' ff f(u,v,t )X2ir)t jj Jt J j

X exp [St - i (~2 + 172 )Z -S - St' + it(U -X) + i17(V -y)J dudv. (20)

Now, for any function g(t),
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ij0 +7_

f i~ +eSt ds e-szc f e-tsg(t') dt= g(t -z/c);
-i +y0

(21)

in addition,

0f
f(u,v,t-z/c) dudv ff eit(u-x) ei?7(v-y) ei( 2 + n2 )z/2k dtd77 (22)

is just the solution of the steady-state problem, translated in time by t - (zic). For ex-
ample, if the amplitude on the initial plane is turned on at some time t and is time inde-
pendent thereafter, the amplitude at z is zero until t + (zlc), and is just the usual time-
independent amplitude from that time on.

Only pulsed Gaussian focused beams at the source are considered. In this case the
zero-order field (5) is

-i

,/ra 2 [k Z_

x2 + y2

2a2 z I

x2 + y2

2a2 [(k2)

(ka2 )

2]

(-f) ]0(t-c-)(2

where

0 t < 
a (t) =

1 t > 

and t1, t2 are pulse turn-on and turn-off times, respectively.

FIRST ORDER FIELD CALCULATION

In this section Eq. (12) is solved, under the conditions

(D 1(x,y,O,t)= 0

= a.~ (D ,0zt) = a (oOOzt) = 0

4h(x,y,z,0) = 0. (24)

Define

(23)

F(x,y,z,t) = 3k 2Np1 ('o)'Io 0(xyzt).

5

.4)0(XYzt) + ( 1 -

- t + Z ,

C

(25)
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The method of Duhamel (6) is employed to solve the inhomogeneous initial value problem.
Let v(x,y,z,t;r) be a one-parameter family of solutions to the homogeneous problem

V2V + 2ik av + 2ik av 0 

subject to the initial condition

v(x,y,z,O;r) = 2ik F(x,y,z,'r).

Then,

1(xyXZt) = f v(x,y,z,t-'r;r) dT. (26)

The proof follows directly by substitution in the inhomogeneous equation.

Duhamel's principle reduces the problem to a solution of a homogeneous equation,
which, unlike the problem in the previous section, has a nonzero initial condition in place
of a nonzero boundary condition.

Fourier analysis in x and y is again applied:

V(Qr7,zt) = 2- f eix ei7y v(x,y,z,t;T) dxdy, (27)

but here it is followed by Laplace transformation in z instead of t due to the new bound-
ary condition:

W(Q,17,st) = f e-sz V(,17,z ,t) dz'. (28)
0

This results in

W(Q,q,s,t) = A(Q,17,s)exp [-2 (42 + 7?2)ct -sct (29)

with A( ,,7,s) to be determined. Let t = 0; then

AQt,7?,s) =WQt,71,s,°)

= ef eSZV(' 1 z', 0) dz'

0

= e-sz dz' ei$x ei 7y 2ik F(x,y,z',r)dxdy. (30)
07 f 2ik

6
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Thus,

W(Q,17,s,t) = e(-iI2k)(02+?72 )cle-sct

x e szJ f [ei$x ei7Y c F(xyz'lr)] dxdY} dz'. (31)

Now inverting the Laplace and Fourier transforms gives

i(xy ,z,0t) = f dr ff dSdi7 e-$x e-iz7 Y

X f ds esz e(-i/2k)(t2+?72)c(t-Tr)-sc(t-fr)

-ioo +'Y

x j [20 ff iAu ei??v 2i F(u,u,z',,r) dudu dz'. (32)
00

2 0es'J eri 7 2ikFuvz'rduld'. (2
f ~~-00

Furthermore,

f ds esz e-s (t-7) f e-sz' F(u,v,z',r) dz' = F(u,v,z - c(t - r),r) (33)
-00+17 0

and also,

(1)2 jsJ e-it(x-u) e-if7(y-u) eH/2k)(t2+,q2)c(t-T) dtd7?

-00

-k exp{ 2r( ) [(u-x)2 + (v-y)2] (34)

Finally,

(Di(XlyZ~t)=-47T J dri- I F(u,v,z - c(t -r),r
-00

X exp 2c(t-r) (u - x)2 + (v - y)2]} dudv. (35)

It will be more convenient to transform the integration in r to an integration over
range. Let ¢ = z - c(t - r). Then Eq. (35) becomes
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b~x~y~~t) 4r A dt-_g

x F(u,v, ,t - (z-T)/c) exp 2( k) [(uX)2 + (V-Y)2 1dudv, (36)

where the lower end point is 0 instead of z - ct since F(x,y, , t - (z - t)/c) is zero both
for ¢ < 0 and for z > ct. In the previous section we saw that for a beam which is turned
on at t = 0 at the laser face and is time independent thereafter, the beam downrange in
vacuum is just delayed by the light propagation time zic but is otherwise the steady-state
beam. Thus, we can replace F(x,y,t,t- (z - )/c by F(x,y,Jt) since F(x,y,r,t) is a func-
tion of the vacuum beam alone. Time at any range is now to be counted from the time
the beam arrives at that range. With this change Eq. (36) is just the solution of Eq. (12)
with the term (2ik/c) 3I 1 /at dropped. This fact is demonstrated in the appendix and
describes the situation where the beam changes are due solely to the relatively sluggish
response of the gas to beam heating.

PERTURBED FIELD IN RESPONSE TO A LONG PULSE

Equations (36), (25), and (23) can now be combined with an expression for the
density change (1) in first order in the limit of pulses which are long in comparison with
hydrodynamic times:

p1 (xy,Z) - - ( 21)atp 1I(ool2, (37)

where y is the ratio of specific heats, ao is the linear absorption coefficient, and tp is the
pulse length. Thus,

F~u~,~,) =3Nk 2Cy - 1)a tp P' - ~k 2 +j-cfF3uNvk~,, C2( l (ira2)3/2 D2(¢) (k i

>eXP{[- 2 2D(¢) (x -1 D(¢) )] (u2 + V2)} (38)

where P is the total power at the laser face,

2
D() (k)2 + (1 -/f)2 (39)

and f is the focal length. Let u = u/a, v = v/a, and evaluate Eq. (36) on axis so that-2 + i(1 - /f )

4) (0°, 0,JZ) = cka dt k 2 (40)cF1 (OOZ) Cl d D2(~) (Z - ~)Continued

8
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x ff exp U + 2D(t)

+i 1- ~/f' ka2 + ika2 )d _Ud _V (40)
( D(¢) ) 2t 2(z -¢) Ud,(0

where

C1= 3iNk 2 (y -1)oPtp (41)
4c8

2 air5 /2

The integrations over u and iv can be readily performed to give

'Fj(0,0,Z) = FC f~ 2()( /ka2 + i(117lf )had (2

2( )(zt) F 2D( - [ 2(z k 2 ( 1-¢ )]} (

A quantity of interest is the ratio of the intensity of the perturbed beam on axis at
the focal point to the intensity of the unperturbed beam there. Equation (42) is there-
fore evaluated at z = f to give

cFi1(0, 0,/' f iC 1 jf /ka + i(1-d~/f43

0 D()(1 - /f) [3- i-¢/f)] d- (43)

Let

1 -¢/
x = ~T/ka2

Then

2ircjkOa2 f (1 + ix)(3x + i) d

~I~i(OO~f)= f 0 (1 + x2 ) (9x2 +1) (4

Only the real part of the integrand is kept since

it~vo + 4j = 1 + 2 Re (co4F) = 1 + 2 Im (1o) Im (45)
14cIOI2I)=(O)m

to first order in the perturbed field and both cl and 4'I are pure imaginary. Thus,

9
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4F1(OO,f) = 2 irc ka2f
f 2x dx

J (1 + x2)(9X2 + l)

- 27rcl ka 2 log 9
f 8

so that

k1 (0,O,f) =
3i log 9N(y - 1)atpP k 3a a

16c52 7rV/T f
(47)

Finally, the ratio of perturbed-to-unperturbed intensity on axis at the focal point is

14o _ + 411|2 log 9 3N (y1- ) oxEk2

l.,o l 2 47r 2 Cs2
(48)

where E is the total energy delivered in the time tp. It is interesting to note that this
result is independent of focal length f and beam size a.

PERTURBED FIELD IN RESPONSE TO A SHORT PULSE

The density change induced in times short compared with a hydrodynamic time
scales is given (1) by

P1 =
Qy-l)oatp3V214o 12

6 (49)

The steps to solution are exactly as in the previous section. The last quadrature is not
completed exactly, however. The analogous equation to Eq. (46) for this case is

'11(0,0,f)= 2rc2 ka2
f

00 (x + ka2 /f) (6x2 + 2) dx
(1 + x2) 2 (9x2 + 1)2

iNk 2 Qy - 1) Utp3 p
C2 = - 5 12 a3

(51)

Now ka 2 /f is typically 10 to 100 for problems of interest. Thus, when x ; ka 2 /f, the
integral has pretty well converged due to the dominance of powers of x in the denomina-
tor. For x << ka2/f, the quantity ka 2 /f can be factored out of the integrand to give

4,1(1,0,f) ~ 2rC2( )ka2\ 2x(6X 2 +2) dx
~I~~l,~f) 2ic2\)C J (1 + x2) 2 (9X2 + 1)2 d (52)

Continued

(46)

where

(50)

10
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/3 1 \ N(,y - 1) tp2E k5a3
-2i (i28 log 9 + 16) N c _

Thus,

* + =1 -(2 log 9 + 1) 3N ( 1)axtp2E k4 a2

A geometrical optics calculation of the on-axis intensity ratio when focusing is ad-
joined (3,7) gives, for the short pulse case,

I =1-5[3 N(C-1)OEtp2] k4 2 (54)

where 6 0 is a number like 0.4. This should be compared with Eq. (53). The long pulse
result in geometrical optics (3,7) is

I 31k 
lo= 1 6°'[2 T N(,y- 1) E])

where 600 is a number of order unity. This should be compared with Eq. (48).

Thus, the results differ in both cases only by a numerical factor. This lends credence
to the methods of Ref. (3) to incorporate focusing in a geometric optics formulation of
beam propagation.

ACKNOWLEDGMENT

The author thanks John Hayes for suggesting the problem and for critically reading
the manuscript.

REFERENCES

1. J.N. Hayes, "Thermal Blooming of Laser Beams in Gases," NRL Report 7213, Feb.
11, 1971; Appl. Opt. 11, 455 (1972).

2. J.R. Kenemuth, C.B. Hogge, R.R. Butts, and P.V. Avizonis, Laser Division Digest, Air
Force Weapons Laboratory, Kirtland AFB, N.M., Dec. 1971.

3. A.H. Aitken, J.N. Hayes, and P.B. Ulrich, to be published.

4. P.B. Ulrich, "A Numerical Calculation of Thermal Blooming of Pulsed, Focused Laser
Beams," NRL Report 7382, Dec. 30, 1971.

5. J.N. Hayes, P.B. Ulrich, and A.H. Aitken, "Propagation of High-Energy, 10.6-Micron
Laser Beams through the Atmosphere," NRL Report 7293, May 28, 1971; Appl. Opt.
11, 257 (1972).

6. P.R. Garabedian, "Partial Differential Equations," Wiley, New York, 1964, p. 210.

7. A.H. Aitken, NRL report to be published.

11l



Appendix A

SOLUTION FOR INFINITE LIGHT VELOCITY

This appendix demonstrates that Eq. (36) is the solution of Eq. (12) with (2ik/c)
a4)1/at set equal to zero. The equation to be solved is

V 2.1 + 2ik a 1 = F(x,y,z,t). (Al)I ~~az
Duhamel's principle is again employed. Let v(x,y,z;t) be a one-parameter family of solu-
tions to the homogeneous problem

V 2v + 2ik a= 0 (A2)

subject to the condition

v(x,y,0;¢) = F(x,y, ,t)/2ik. (A3)

Then,

Z

(Di (X,Y,Z) = v (x,y,z -¢;¢) d¢. (A4)
0

The homogeneous problem is solved by Fourier analysis to give for V(Q,r7,z), the Fourier
transform of v(x,y,z;¢),

V(Q,17,z) = A(, 17)e(-i/ 2 k)(t2+172)z (A5)

where

00

A( ,17) = V(Q,17,0) = ff ei8x eizY v(x,y,O;¢) dxdy. (A6)

Inverting the Fourier integrals gives

v(xyz;0) = 2ir JJ dudv 4fik e(-iI2k)(2+172)z eit(UX) ei7(v-y) dtdq. (A7)
-00 _00

12
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Substituting Eq. (A7) into Eq. (A4) and integrating with respect to t and 17 gives

00

1)1(x y z) =7 tf (Zt F uJv' ,t'

X exp { k 2( t)[(u - x)2 + (v - y) 2 ] }dud, (A8)ex { 2(zk -) duv (S

which except for the time dependence is exactly Eq. (36). If time is measured at each
range beginning at the arrival of the light beam at that range, then Eqs. (21) and (22)
imply that Eq. (A8) and Eq. (36) are equivalent.




